Select Page

value of a dataset. They provide a way to summarize and understand the central or average value within a set of data. The three most common measures of central tendency are the mean, median, and mode:

  1. Mean:
    • The mean, often referred to as the average, is calculated by adding up all the values in a dataset and then dividing by the number of values (observations).
    • It is represented mathematically as:

      Mean=Sum of all valuesNumber of values

       

    • The mean is sensitive to extreme values (outliers) in the dataset. If there are outliers, the mean can be skewed in their direction.
    • For example, if you have the dataset {2, 4, 6, 8, 100}, the mean is (2 + 4 + 6 + 8 + 100) / 5 = 24.
  2. Median:
    • The median is the middle value when the data is arranged in ascending or descending order. If there is an even number of data points, the median is the average of the two middle values.
    • It is not influenced by extreme values and is useful for datasets with outliers.
    • To find the median:
      • Step 1: Sort the data in ascending order.
      • Step 2: If the number of data points is odd, the median is the middle value. If it’s even, the median is the average of the two middle values.
    • For example, in the dataset {3, 1, 7, 2, 6}, when sorted, the median is 3.
  3. Mode:
    • The mode is the value that appears most frequently in a dataset. A dataset can have one mode (unimodal), more than one mode (multimodal), or no mode if all values occur with the same frequency.
    • Unlike the mean and median, the mode can be used for both numerical and categorical data.
    • There can be cases where a dataset has no mode (e.g., all values occur exactly once), or it can have multiple modes if multiple values occur with the same highest frequency.
    • For example, in the dataset {3, 5, 2, 5, 3, 7, 5}, the mode is 5 because it appears more frequently (three times) than any other value.